

Violent Fluidization and Erosion in Plume Surface Interactions

November 21, 2021

Matt Gorman

Juan Sebastian Rubio Miguel X. Diaz-Lopez Dr. Rui Ni

mpinging Plumes Induce Crater and Ejecta

Lane and Metzger (UCF) 2015 – Acta Geophysica

https://nasa.gov/

- 1. Under-expanded supersonic jet
- 2. Surface impingement
- 3. Granular media

Metzger, P., et al. 2009 - 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition

Cratering Mechanisms Identified during Apollo and Viking Programs

0

NI RESEARCH GROUP

Metzger and Immer (KSC) 2009, Journ. Aero Eng.

UNIVERSITY

INS

4

Guerriero and Mazzoli 2021, Geosciences

OHNS

Cratering Mechanisms Identified during Apollo and Viking Programs

UNIVERSITY

Cratering Mechanisms Identified during Apollo and Viking Programs

Guerriero and Mazzoli 2021, Geosciences

Role of Ambient Pressure on Cratering and Ejecta dynamics

Shadowgraphs of a Mach 5 jet exhausting onto a flat plate

Land and Clark (LRC) 1965, NASA

PFGT1: Physics Focused Ground Test 1

PFGT1 Objective: Study Erosion and Ejecta Dynamics due to Plume-Surface Interactions

Parameter	Range
p _{vac}	0.02 torr to 4.5 torr
h/D _e	3.0 to 10.0
ṁ _j	0.32 g/s to 8.6 g/s
Т _{0,j}	500 K (fixed)
Ма	5 (fixed)

- h/D: Nozzle Height
- p_{vac}: Vacuum Pressure
 - $\dot{m_j}$: Mass Flow Rate

NI RESEARCH GROUP

PFGT1: Diagnostics

PFGT1 Test Conditions:

Lunar and Martian pressures Mach 5 jet flow

Front View

• NI RESEARCH GROUP

PFGT1: Experimental Facility

Results

Earth Pressure Test

NI RESEARCH GROUP

Low Pressure Tests

Low Pressure Tests - Oscillation

Crater Interface "Roll-up" – Higher ambient pressure cases

Crater Interface "Roll-up" observed at higher ambient pressures. Frequencies are consistent with bed oscillation frequency.

Analogous to Kelvin Helmholtz Instability.

Only observed when ambient pressure is high enough that viscous shear is appreciable.

Conclusions

NASA

Successfully completed PFGT1 Experimental Campaign

- Investigated cratering and ejecta dynamics in new flow regimes.
- Obtained valuable dataset for NASA for future missions to the Moon and Mars.

Initial Observations

- Crater Dynamics depend on the ambient pressure.
- Characterized oscillatory behavior at low pressures competition between pore pressure and impinging jet pressure leads to oscillations at lower ambient pressures.

Future Steps – Data Processing

- Time Dependence of Oscillation behaviors.
- Analyze remaining tests different soil simulants and nozzle heights.

